A 2012-es ZNO feladat sor magyarul ukrán szótárral.
A 2013-es ZNO feladat sor magyarul ukrán szótárral.
A 2014-es ZNO feladat sor magyarul ukrán szótárral.
A 2015-es ZNO feladat sor magyarul ukrán szótárral.
A 2016-es ZNO feladat sor magyarul ukrán szótárral.
A 2017-es ZNO feladat sor magyarul ukrán szótárral.
A 2018-es ZNO feladat sor magyarul ukrán szótárral.
A 2019-es ZNO feladat sor magyarul ukrán szótárral.
A vaslemezt, amely egy $$ABCD (AB = 50 cm)$$ alakú téglalap úgy tekerik fel, hogy hengercsövet kapjanak (lásd 1. és 2. ábra). Az $$AB$$ és $$CD$$ széleit összehegesztik, a szélek nem fedik egymást. Számítsa ki a kapott henger (cső) oldalfelszínét, ha az alapjának átmérője $$20 cm$$. Válassza ki a legpontosabb megoldást. Számításkor a lemez vastagágát és a hegesztés nyomvonalát hagyja figyelmen kívül.
A henger alsó és felső alapköreihez tartozó $$A$$ és $$B$$ pontjain keresztül, amelyek nem egy alkotóhoz tartoznak, a henger tengelyéhez párhuzamos síkot húztak. Az alsó alaplapjának középpontjától a síkig a távolság $$2 cm$$ egyenlő, a keletkezett metszet területe pedig $$60\sqrt{2}cm^2$$ . Határozza meg az $$AB$$ szakasz hosszát ($$cm$$-ben), ha a henger oldalfelületének területe $$20\sqrt{30\pi }cm^2$$ egyenlő.