A 2012-es ZNO feladat sor magyarul ukrán szótárral.
A 2013-es ZNO feladat sor magyarul ukrán szótárral.
A 2014-es ZNO feladat sor magyarul ukrán szótárral.
A 2015-es ZNO feladat sor magyarul ukrán szótárral.
A 2016-es ZNO feladat sor magyarul ukrán szótárral.
A 2017-es ZNO feladat sor magyarul ukrán szótárral.
A 2018-es ZNO feladat sor magyarul ukrán szótárral.
A 2019-es ZNO feladat sor magyarul ukrán szótárral.
Az ábrán egy bolthajtásos átjáró keresztmetszete látható, melynek felső
részének alakja egy $$OC = 2m$$ sugarú félkör ($$BKC$$ körív). Az $$AB$$ és $$DC$$ szakaszok merőlegesek az $$AD$$ szakaszra, $$AB = DC = 2 m$$. A felsorolt értékek közül melyik lesz a teherautó h magasságának legnagyobb értéke, amelyikkel át tud hajtani ezen a bolthajtásos átjárón? Vegye figyelembe, hogy $$LMNP$$ téglalap, ahol $$MN = 2,4 m$$ és $$MN\ \parallel \ AD$$.
A gömb és sík metszetének területe $$81\pi \ cm^2$$. Határozza meg a gömb középpontja és a metszet közötti távolságot, ha a gömb sugara $$15cm$$ egyenlő.
A henger alsó és felső alapköreihez tartozó $$A$$ és $$B$$ pontjain keresztül, amelyek nem egy alkotóhoz tartoznak, a henger tengelyéhez párhuzamos síkot húztak. Az alsó alaplapjának középpontjától a síkig a távolság $$2 cm$$ egyenlő, a keletkezett metszet területe pedig $$60\sqrt{2}cm^2$$ . Határozza meg az $$AB$$ szakasz hosszát ($$cm$$-ben), ha a henger oldalfelületének területe $$20\sqrt{30\pi }cm^2$$ egyenlő.
Az $$ABCDA_1B_1C_1D_1 $$egyenes hasáb alapja az $$ABCD$$ egyenlőszárú trapéz. A trapéz $$AD$$ alapja egyenlő a trapéz magasságával és hatszor nagyobb a $$BC$$ alapjánál. A hasáb $$CC_1 $$oldalélén át az $$AB$$ éllel párhuzamos síkot fektettek. Határozza meg a kapott metszet területét ($$cm^2$$ -ben), ha a hasáb térfogata $$672 cm^3$$ egyenlő, a magassága pedig $$8 cm$$.
A rajzon a fal keresztmetszetének ($$KLMN $$ téglalap) részletét ábrázolták egy $$ABFCD$$ boltíves vágással, amelynek a felső $$BFC$$ része egy $$1 m$$ sugarú körvonal köríve. Az $$AB$$ és $$DC$$ szakaszok merőlegesek az $$AD$$ szakaszra, $$AB=DC=2 m$$ . $$AD=1,6 m , KL=2,75 m$$. Határozza meg a vágás legmagasabb $$F$$ pontja és az $$LM$$ plafon közötti $$d$$ távolságot.