Matematika Szótár


metszet

переріз

A kifejezést tartalmazó tesztek

ZNO 2017

Az ábrán egy bolthajtásos átjáró keresztmetszete látható, melynek felső
részének alakja egy $$OC = 2m$$ sugarú félkör ($$BKC$$ körív). Az $$AB$$ és $$DC$$ szakaszok merőlegesek az $$AD$$ szakaszra, $$AB = DC = 2 m$$. A felsorolt értékek közül melyik lesz a teherautó h magasságának legnagyobb értéke, amelyikkel át tud hajtani ezen a bolthajtásos átjárón? Vegye figyelembe, hogy $$LMNP$$ téglalap, ahol $$MN = 2,4 m$$ és $$MN\ \parallel \ AD$$.

ZNO 2013

A gömb és sík metszetének területe $$81\pi \ cm^2$$. Határozza meg a gömb középpontja és a metszet közötti távolságot, ha a gömb sugara $$15cm$$ egyenlő.

ZNO 2014

A henger alsó és felső alapköreihez tartozó $$A$$  és $$B$$  pontjain keresztül, amelyek nem egy alkotóhoz tartoznak, a henger tengelyéhez párhuzamos síkot húztak. Az alsó alaplapjának középpontjától a síkig a távolság $$2 cm$$  egyenlő, a keletkezett metszet területe pedig $$60\sqrt{2}cm^2$$ . Határozza meg az $$AB$$  szakasz hosszát ($$cm$$-ben), ha a henger oldalfelületének területe $$20\sqrt{30\pi }cm^2$$  egyenlő.

ZNO 2012

Az $$ABCDA_1B_1C_1D_1 $$egyenes hasáb alapja az $$ABCD$$  egyenlőszárú trapéz. A trapéz $$AD$$  alapja egyenlő a trapéz magasságával és hatszor nagyobb a $$BC$$  alapjánál. A hasáb $$CC_1  $$oldalélén át az $$AB$$  éllel párhuzamos síkot fektettek. Határozza meg a kapott metszet területét ($$cm^2$$ -ben), ha a hasáb térfogata $$672 cm^3$$  egyenlő, a magassága pedig $$8 cm$$.

ZNO 2018

A rajzon a fal keresztmetszetének ($$KLMN $$ téglalap) részletét ábrázolták egy $$ABFCD$$  boltíves vágással, amelynek a felső $$BFC$$ része egy $$1 m$$  sugarú körvonal köríve. Az $$AB​​​​​​​$$  és $$DC​​​​​​​$$  szakaszok merőlegesek az $$AD$$  szakaszra, $$AB=DC=2 m​​​​​​​$$ . $$AD=1,6 m​​​​​​​ , KL=2,75 m$$.  Határozza meg a vágás legmagasabb $$F$$ pontja és az $$LM$$  plafon közötti $$d​​​​​​​$$ távolságot.      

Hasonló kifejezések