A 2012-es ZNO feladat sor magyarul ukrán szótárral.
A 2013-es ZNO feladat sor magyarul ukrán szótárral.
A 2014-es ZNO feladat sor magyarul ukrán szótárral.
A 2015-es ZNO feladat sor magyarul ukrán szótárral.
A 2016-es ZNO feladat sor magyarul ukrán szótárral.
A 2017-es ZNO feladat sor magyarul ukrán szótárral.
A 2018-es ZNO feladat sor magyarul ukrán szótárral.
A 2019-es ZNO feladat sor magyarul ukrán szótárral.
Az$$ A(0; 0; - 5) $$pont hozzátartozik egy derékszögűkoordinátarendszerben megadott origó középpontú gömbhöz. A felsorolt pontok közül melyik tartozik
még ehhez a gömbhöz?
Az $$\overline{OA}$$ vektor a térbeli koordinátarendszer $$O_z$$ tengelyén fekszik (lásd ábra) és kezdőpontja egybeesik az origóval. Határozza meg az $$\overline{OA}\ $$vektor koordinátáját, ha hossza egyenlő $$3$$.
A $$C$$ pont a derékszögű koordinátarendszer $$x$$ tengelyén az $$A\left(-2;\ 4\right)$$ ponttól $$5$$ egység távolságra fekszik. Határozza meg a $$C$$ pont koordinátáját
Oldja meg a $$\left\{\frac{2x+5y=5}{x-2y=7}\right\}$$ egyenletrendszert. A kapott $$(x_0; y_0)$$ megoldásra nézve határozza meg az $$x_0+y_0$$ összegét.
A derékszögű koordinátarendszer $$xy$$ síkján megadták az $$O(0; 0)$$ és $$A(6; 8)$$ pontokat. Az $$A$$ pontból az $$x$$ tengelyre merőlegest húztak. A $$B$$ pont a merőleges talppontja. Feleltesse meg az $$(1 – 4)$$ felsorolt mennyiségeket az $$(А – Д)$$ számértékével
Oldja meg a $$\begin{cases} \text{} 3\sqrt{x}=12 \\ \text{} x-2y=26\end{cases}$$ egyenletrendszert. A rendszer $$(x0; y0)$$ megoldására nézve számítsa ki az $$x0 +y0$$ összeget.
Határozza meg az $$a$$ paraméter összes negatív értékét, amelyekkel a $$\begin{cases}
\text{} 2\sqrt{y^2-4y+4}+3\left|x\right|=11-y \\
\text{} 25x^2-20ax=y^2-4a^2
\end{cases}$$ egyenletrendszernek egyetlen megoldása van. Ha egy ilyen paraméterérték van, akkor azt írja be a feleletbe. Ha több ilyen paraméterérték van, akkor a feleletbe írja be az összegüket.
A derékszögűkoordinátarendszerben az $$xyz$$ síkon az $$A(2; 0; 0)$$ és $$B(– 4; 2; 6)$$ pontok vannak megadva. Minden (1 – 4) mondat kezdethez válasszon egy olyan (А – Д) mondat véget, hogy a kapott állításigaz legyen.
Oldja meg a következő egyenletrendszert: $$\begin{cases} \text{ } x+y=5, \\ \text{ } 4^x=16^{-1}\end{cases}$$ Ha $$(x_0; y_0)$$ – megoldása ennek a rendszernek, akkor $$x_0\cdot y_0=0$$
A térbeli koordinátarendszerben a $$z$$ tengelyen kiválasztottak egy $$M$$ pontot (lásd a rajzot). A megadott változatok közül válassza ki ezen pontlehetséges koordinátáit.
A derékszögűkoordináta rendszerben adva van egy $$ABCD$$ paralelogramma, $$\cos A=0,4$$. Határozza meg a paralelogramma $$BD$$ átlójának hosszát, ha az $$\overrightarrow{AB} (6; – 8)$$ és $$\overrightarrow{AD}$$ vektorok skaláris szorzata egyenlő $$96$$.
A felsorolt pontok közül melyik tartozik a térbeli $$O_z$$ derékszögű koordinátarendszer tengelyéhez?
Oldja meg az $$\begin{cases}y-x=9\\\frac{x+8}{2y-5}=2\end{cases}$$.egyenletrendszert. A feleletbe írja be az $$x_0∙y_0$$ szorzatot, ha az $$(x_0;y_0)$$ számpár az egyenletrendszer megoldása lesz.
Oldja meg az $$\begin{cases}xy=-12\\ x(2y-1)=-18\end{cases} $$egyenlőtlenség-rendszert. Ha $$x_0; y_0$$ az egyenlőtlenség-rendszer megoldása, akkor $$x_0 =$$
A derékszögű koordinátarendszer síkján az $$\overrightarrow{AB}$$ és $$\overrightarrow{a}(3;-5)$$ kollineáris vektorok vannak megadva. Határozza meg a $$B$$ pont abszcisszáját, ha $$A(-4; 1)$$ , a $$B$$ pont pedig az $$y=3$$ egyenesen fekszik.