Matematika Szótár


szakasz

відрізок

A kifejezést tartalmazó tesztek

ZNO 2017

Az $$AB$$ szakaszon egy $$M $$pontot úgy vettek fel, hogy az $$AM $$hossza háromszor nagyobb az $$MB $$hosszánál. Határozza meg az $$AB$$ szakasz hosszát, ha $$MB = 12 cm.$$

ZNO 2017

Az ábrán egy bolthajtásos átjáró keresztmetszete látható, melynek felső
részének alakja egy $$OC = 2m$$ sugarú félkör ($$BKC$$ körív). Az $$AB$$ és $$DC$$ szakaszok merőlegesek az $$AD$$ szakaszra, $$AB = DC = 2 m$$. A felsorolt értékek közül melyik lesz a teherautó h magasságának legnagyobb értéke, amelyikkel át tud hajtani ezen a bolthajtásos átjárón? Vegye figyelembe, hogy $$LMNP$$ téglalap, ahol $$MN = 2,4 m$$ és $$MN\ \parallel \ AD$$.

ZNO 2014

Az $$AB$$ szakasz az $$\alpha$$ síkot egy $$O$$ pontban metszi. Az $$AO$$ és $$BO$$ szakaszok vetületei az $$\alpha$$ síkra megfelelően $$5 cm$$ és $$20 cm$$ egyenlő. Határozza meg az $$AB$$ szakasz hosszát, ha $$AO=8 cm$$.

DPA 9 osztály

Határozd meg a $$CD$$ szakasz felezőpontjának koordinátáit, ha $$C(4;-1),D(-8;7)!$$

ZNO 2014

Az egyenlőszárú trapéz átlója a hegyesszögének a szögfelezője és a trapéz középvonalát $$13 cm$$  és $$23 cm$$  hosszú szakaszokra osztja. Számítsa ki a trapéz területét ($$cm^2$$-ben).

ZNO 2014

A henger alsó és felső alapköreihez tartozó $$A$$  és $$B$$  pontjain keresztül, amelyek nem egy alkotóhoz tartoznak, a henger tengelyéhez párhuzamos síkot húztak. Az alsó alaplapjának középpontjától a síkig a távolság $$2 cm$$  egyenlő, a keletkezett metszet területe pedig $$60\sqrt{2}cm^2$$ . Határozza meg az $$AB$$  szakasz hosszát ($$cm$$-ben), ha a henger oldalfelületének területe $$20\sqrt{30\pi }cm^2$$  egyenlő.

ZNO 2015

Az $$ABC$$  háromszögben az $$M$$  pont az $$AB$$  átfogó középpontja, amelynek hossza $$26 cm$$  egyenlő. Az $$O$$  pont a $$B$$  és $$C$$  csúcsoktól $$15 cm$$  távolságra van, a $$BC$$  oldaltól pedig $$10\sqrt{2}cm$$ -re. Az $$O$$  pontból a $$BC$$  befogóra $$OK$$  merőlegest húztak, a $$K$$  pont hozzátartozik az $$OM$$  szakaszhoz.

ZNO 2016

A sarki jégtakaró területének éves minimumait a 2004. évtől a 2014. évig tartó időszakban vastagított pontokkal ábrázolták ( szemléltetésként a pontokat szakaszokkal összekötötték). Vízszintesen az éveket tüntették fel, függőlegesen pedig a jégtakaró felszínének területét (millió $$km^2$$-ben). A feltüntetett információ segítségével határozza meg az adott időszak azon évét, amelyikben a jégtakaró felszínének területének éves minimuma a $$legtöbbet$$ változott az előző évihez képest.

ZNO 2016

A rajzon egy $$O$$ középpontú körvonalat ábrázoltak, amelynek sugara $$6$$. A $$BC$$ húrt a körvonal középpontjából $$60^{\circ}$$  szög alatt látni, a $$BK$$ pedig az átmérő. Az $$A$$ ponton keresztül a körvonalhoz $$AB$$ érintőt húztak úgy, hogy az $$AO = 2AB$$. Feleltesse meg az (1 – 4) szakaszokat és azok (А – Д) hosszát.

ZNO 2017

Az (1 – 4) ábrákon a [ - 4; 4] szakaszon meghatározott függvények láthatók.
Minden (1 – 4) mondat kezdethez válasszon egy olyan (А – Д) mondat véget, hogy
a kapott állításigaz legyen.

ZNO 2012

Oldja meg az (1 – 4) egyenleteket. Feleltesse meg az egyenleteket és az

(А – Д) felsorolt gyökök számával a $$\left[-5;5\right]$$ szakaszon.

ZNO 2018

A rajzon a fal keresztmetszetének ($$KLMN $$ téglalap) részletét ábrázolták egy $$ABFCD$$  boltíves vágással, amelynek a felső $$BFC$$ része egy $$1 m$$  sugarú körvonal köríve. Az $$AB​​​​​​​$$  és $$DC​​​​​​​$$  szakaszok merőlegesek az $$AD$$  szakaszra, $$AB=DC=2 m​​​​​​​$$ . $$AD=1,6 m​​​​​​​ , KL=2,75 m$$.  Határozza meg a vágás legmagasabb $$F$$ pontja és az $$LM$$  plafon közötti $$d​​​​​​​$$ távolságot.