A 2012-es ZNO feladat sor magyarul ukrán szótárral.
A 2013-es ZNO feladat sor magyarul ukrán szótárral.
A 2014-es ZNO feladat sor magyarul ukrán szótárral.
A 2015-es ZNO feladat sor magyarul ukrán szótárral.
A 2016-es ZNO feladat sor magyarul ukrán szótárral.
A 2017-es ZNO feladat sor magyarul ukrán szótárral.
A 2018-es ZNO feladat sor magyarul ukrán szótárral.
A 2019-es ZNO feladat sor magyarul ukrán szótárral.
Az $$AB$$ szakaszon egy $$M $$pontot úgy vettek fel, hogy az $$AM $$hossza háromszor nagyobb az $$MB $$hosszánál. Határozza meg az $$AB$$ szakasz hosszát, ha $$MB = 12 cm.$$
Az ábrán egy bolthajtásos átjáró keresztmetszete látható, melynek felső
részének alakja egy $$OC = 2m$$ sugarú félkör ($$BKC$$ körív). Az $$AB$$ és $$DC$$ szakaszok merőlegesek az $$AD$$ szakaszra, $$AB = DC = 2 m$$. A felsorolt értékek közül melyik lesz a teherautó h magasságának legnagyobb értéke, amelyikkel át tud hajtani ezen a bolthajtásos átjárón? Vegye figyelembe, hogy $$LMNP$$ téglalap, ahol $$MN = 2,4 m$$ és $$MN\ \parallel \ AD$$.
Az $$AB$$ szakasz az $$\alpha$$ síkot egy $$O$$ pontban metszi. Az $$AO$$ és $$BO$$ szakaszok vetületei az $$\alpha$$ síkra megfelelően $$5 cm$$ és $$20 cm$$ egyenlő. Határozza meg az $$AB$$ szakasz hosszát, ha $$AO=8 cm$$.
Az egyenlőszárú trapéz átlója a hegyesszögének a szögfelezője és a trapéz középvonalát $$13 cm$$ és $$23 cm$$ hosszú szakaszokra osztja. Számítsa ki a trapéz területét ($$cm^2$$-ben).
A henger alsó és felső alapköreihez tartozó $$A$$ és $$B$$ pontjain keresztül, amelyek nem egy alkotóhoz tartoznak, a henger tengelyéhez párhuzamos síkot húztak. Az alsó alaplapjának középpontjától a síkig a távolság $$2 cm$$ egyenlő, a keletkezett metszet területe pedig $$60\sqrt{2}cm^2$$ . Határozza meg az $$AB$$ szakasz hosszát ($$cm$$-ben), ha a henger oldalfelületének területe $$20\sqrt{30\pi }cm^2$$ egyenlő.
Az $$ABC$$ háromszögben az $$M$$ pont az $$AB$$ átfogó középpontja, amelynek hossza $$26 cm$$ egyenlő. Az $$O$$ pont a $$B$$ és $$C$$ csúcsoktól $$15 cm$$ távolságra van, a $$BC$$ oldaltól pedig $$10\sqrt{2}cm$$ -re. Az $$O$$ pontból a $$BC$$ befogóra $$OK$$ merőlegest húztak, a $$K$$ pont hozzátartozik az $$OM$$ szakaszhoz.
A sarki jégtakaró területének éves minimumait a 2004. évtől a 2014. évig tartó időszakban vastagított pontokkal ábrázolták ( szemléltetésként a pontokat szakaszokkal összekötötték). Vízszintesen az éveket tüntették fel, függőlegesen pedig a jégtakaró felszínének területét (millió $$km^2$$-ben). A feltüntetett információ segítségével határozza meg az adott időszak azon évét, amelyikben a jégtakaró felszínének területének éves minimuma a $$legtöbbet$$ változott az előző évihez képest.
A rajzon egy $$O$$ középpontú körvonalat ábrázoltak, amelynek sugara $$6$$. A $$BC$$ húrt a körvonal középpontjából $$60^{\circ}$$ szög alatt látni, a $$BK$$ pedig az átmérő. Az $$A$$ ponton keresztül a körvonalhoz $$AB$$ érintőt húztak úgy, hogy az $$AO = 2AB$$. Feleltesse meg az (1 – 4) szakaszokat és azok (А – Д) hosszát.
Az (1 – 4) ábrákon a [ - 4; 4] szakaszon meghatározott függvények láthatók.
Minden (1 – 4) mondat kezdethez válasszon egy olyan (А – Д) mondat véget, hogy
a kapott állításigaz legyen.
Oldja meg az (1 – 4) egyenleteket. Feleltesse meg az egyenleteket és az
(А – Д) felsorolt gyökök számával a $$\left[-5;5\right]$$ szakaszon.
A rajzon a fal keresztmetszetének ($$KLMN $$ téglalap) részletét ábrázolták egy $$ABFCD$$ boltíves vágással, amelynek a felső $$BFC$$ része egy $$1 m$$ sugarú körvonal köríve. Az $$AB$$ és $$DC$$ szakaszok merőlegesek az $$AD$$ szakaszra, $$AB=DC=2 m$$ . $$AD=1,6 m , KL=2,75 m$$. Határozza meg a vágás legmagasabb $$F$$ pontja és az $$LM$$ plafon közötti $$d$$ távolságot.